
Open Control Architectures
Final Report

Chandrasekar Ramachandran, Balasubramanian
Ramachandran & Joseph Evans

ITTC-FY2001-TR-18835-01

January 2001

Copyright © 2001:
The University of Kansas Center for Research, Inc.,
2335 Irving Hill Road, Lawrence, KS 66045;
and Sprint Corporation.
All rights reserved.

Project Sponsor:
Sprint Corporation

Technical Report

The University of Kansas

Open Control Architectures – Executive Summary

Value to Sprint

• The study and experiments of the protocols namely VSI and GSMP will give valuable

clues on the choice of protocol for deployment based on requirements.

• Experiments and results on VSI can provide insight in to the delays and latencies that

will be experienced due to the protocol and hardware.

Lessons Learned

Applicability of Open Control

• Switches or optical cross-connects using open control can be useful for service

providers by providing vendor and some media independence.

• Service outages and problems occur due to any upgrade in protocol software in the

provider networks. Open control provides virtual partitioning and facilitates

redundancy, and helps to minimize such outages.

• Protocols that involve some form of signaling can most benefit from open control.

VSI and GSMP

• Changing partition resources will be necessary due to changes in the network or the

addition of new customers. VSI supports dynamic partitioning and makes network

management easier.

• Due to the very high speeds in provider backbones, using hardware standby or

configuring multiple paths is better than relying on the control protocol to provide

controller redundancy.

• GSMP allows for interoperability of boxes of different vendors whereas VSI does

not.

• VSI requires a high-end router as controller and is will more likely increase

deployment cost. GSMP can be implemented on any platform and is more likely to

reduce deployment cost.

MPLS CoS

• The multi-VC approach used by our implementation of MLPS CoS uses ATM

services better than the approach that uses the MPLS EXP field, but this may not be

better if the number of service classes is larger (e.g., multiple classes based on

different drop precedences as in DiffServ AF PHB).

• Experiences with our MPLS CoS implementation as well as Cisco’s VSI indicate that

reservations for each class are not rigid but relative. This may not be desirable in

situations where the requirements for delay and jitter are very strict.

Open Control Architectures
ITTC, University of Kansas

2

Table of Contents

1 Introduction
1.1 Switch Control Interface

1.1.1 Generic Switch Management Protocol (GSMP)
1.1.2 Cisco’s Virtual Switch Interface (VSI)

1.2 Outline of Tasks

2 Study of VSI as Switch Control Interface
2.1 VSI Operation Model

 2.2 Hardware and Software Requirements
 2.3 Configuration of VSI Label Switch Controlled partition
 2.4 Multiple Partitioning
 2.5 Configuration of VSI Master Redundancy
 2.5.1 Configuration commands
 2.5.2 Application of exclusive redundancy

2.6 Virtual Trunks
 2.7 Configuration of Service Classes
 2.7.1 Class of Service Templates
 2.7.2 Configuration of MPLS Class of Service

2.7.3 Test Results
2.8 Protocol or software upgrades

3 Cplane’s SSDK
 3.1 Hardware and software requirements
 3.2 Management Interface
 3.3 Partition Management
 3.3.1 Partition Configuration file
 3.3.2 Creation and deletion of switch partitions
 3.3.3 Addition and shrinking of a partition's resources
 3.3.3.1 Addition and removal of ports

3.3.3.1 Addition and removal of label space
 3.3.3.2 Addition and removal of bandwidth

3.4 Setting Service Categories for connections

4 VSI Measurements
4.1 Methodology
4.2 Connection setup and tear-down times

 4.2.1 Single VC or Connection setup and teardown times
 4.2.2 Plot of Connection setup times Vs number of cross connect VCs
 4.3 Extended interface up/down times
 4.4 Connectivity loss during controller change

5 Comparison of VSI features with that of GSMP
 5.1 Resource Management
 5.1.1 Creation of new partition

Open Control Architectures
ITTC, University of Kansas

3

 5.1.2 Limit on number of partitions
 5.1.3 Dynamic partitioning
 5.2 Support for different control planes
 5.3 Support for Redundancy

5.4 Support for Service models
5.5 Conclusions

6 Implementation of Open Control Architectures
6.1 Implementation of offboard Tag Switching Architecture

6.1.1 Tag Switching Concepts
6.1.2 Tag Distribution Protocol
6.1.3 Implementation Environment and Tools
6.1.4 Implementation Structure
6.1.5 Test Results

6.2 Implementation of MPLS CoS
6.2.1 MPLS CoS over ATM
6.2.2 Implementation Approach
6.2.3 Implementation Environment and Tools
6.2.4 Implementation Structure
6.2.5 CoS Implementation

6.2.5.1 At the Edge
6.2.5.2 At the Core

6.2.6 Test Results and Observations
6.2.6.1 Test #1
6.2.6.2 Test #2
6.2.6.3 Test #3
6.2.6.4 Test #4

6.3 Conclusions

7 Contribution to Open Control Community

8 Conclusions

9 References

Appendix

Open Control Architectures
ITTC, University of Kansas

4

1 Introduction

The number of businesses moving towards Internet is rapidly increasing every day. This would

inevitably lead to numerous applications that try to integrate them to the global network. Such

applications not only demand huge capacity but also quality. Timely and correct delivery may

become very important. The need of services arises due to the limitation of bandwidth and the

provisioned bandwidth is likely to be used up very soon. Also premium services will generate

higher revenues for the providers. The current model of Internet is not well equipped to handle

increasing demand for traffic with service demands which makes QoS problem very difficult to

solve. Even if the capacity of the links and router processing engines increases rapidly, the demand

too is likely to keep pace with it. To efficiently support such applications,

creation/deletion/management of services is required on-demand. The service may have to be

created across various administrative domains. Service management is easier and more efficient

when the control and the data planes are separated in the network infrastructure.

 The control and management functionality of most of the current networks is tightly coupled to the

network hardware of vendors. With Open Control, network devices and resources are controlled

and managed by external devices through an open control interface. Open control reduces the

association between the control plane and the switching or data plane allowing them to evolve

independently. This makes the open control systems easily upgradable and deployable.

The concept of open control is more relevant to ATM switches than IP routers due to the

connection oriented-ness of ATM. The control interface of a switch should allow the controller to

influence the flow or connections through the switch. In IP routers, the notion of connection or flow

is not enforced. The forwarding is based only on the destination address. But in ATM, the notion is

required at the call setup before any data is transferred. But off-board control can be more

appropriate for MPLS [1] routers or switches that involves some sort of signaling across an

Autonomous System (AS) before data transfer. This is true when MPLS is run on almost all link

layers like ATM, frame relay or IP.

Open Control Architectures
ITTC, University of Kansas

5

Generic Switch Management Protocol (GSMP) and Virtual Switch Interface (VSI) are two primary

switch control protocols. Although initially, more importance is given to ATM switches, the

protocols are likely to support many types of switches.

1.1 Switch Control Inter face

The deployment of open control requires a standard interface [2] for the control architecture to

communicate with the switch or router and to manipulate the resources to perform its control and

management functions. The control interface serves to abstract the ATM switch to allow the control

architecture to fully utilize the physical resources of the switch using this abstract model. When the

interface to the switch is opened up, anyone with the knowledge of the interface can implement

control software.

1.1.1 Gener ic Switch Management Protocol (GSMP)

The General Switch Management Protocol (GSMP) was designed first by Ipsilon and has been

available as open document in the form of IETF RFCs and drafts. The latest version GSMPv2.0

that was released on August 1998 as RFC2297 [3] and the previous versions were intended

primarily for ATM switches. Currently IETF GSMP working group is working on GSMPv3 [4]

that will run on different kinds of switches and is targeted to run with all kinds of MPLS routers

too.

GSMP allows the controller to

• create and release connections across the switch

• add and delete leaves of a multicast connection

• reserve resources for different types of connections

• manage switch ports

• request switch configuration information and switch statistics

A physical switch can be partitioned in to virtual switches called partitions. Such partitions have to

be created prior to running GSMP. In GSMPv3, a partitioned switch is controlled through the use

Open Control Architectures
ITTC, University of Kansas

6

of partition identifier contained in every GSMP message. Hence each partition has a one to one

relationship with a single logical controller entity. Every connection is created with a set of

specified QoS parameters.

1.1.2 Cisco’s Vir tual Switch Inter face (VSI)

Virtual Switch Interface (VSI) [5] is Cisco’s proprietary protocol and is available with Cisco WAN

switching software and IOS releases. The latest version VSI 2.2 requires WAN Switching Software

release 9.2.20 for BPX as minimum switching software requirement. Currently, VSI functions only

with ATM switches. A BPX switch partition can be controlled by MPLS or PNNI control plane.

Each MPLS node consists of a Cisco 6400 or 7200 or 7500 router and a BPX ATM switch

The MPLS controller is also called Label Switch Controller (LSC). The latest release of VSI

supports three MPLS partitions in an interface. VSI allows the PNNI controller to create VCs with

desired ATM Forum QoS parameters. Control of partition for PNNI requires a dedicated box

Service Expansion Shelf (SES).

1.2 Outline of Tasks

The Open Control project at KU is divided in to four major tasks

• Study of VSI as Switch Control Inter face – This task involves configuration and testing of

VSI features and study of merits and demerits of VSI as a switch control protocol. As part of

this task comparative study is made on the relative advantages and drawbacks of VSI and

GSMP. The outcome of the study as part of this task is presented in Sections 2, 3 and 5.

• Implementation of Open Control Architectures – this task involves implementation and

testing of control architectures primarily label switching architectures. This task is presented in

Section 6.

• Open Control Measurements – this task involves testing the performance of latest available

control implementations from vendors. Measurements are done with VSI 2.2 with WAN

Switching Software release 9.2.23 for BPX. The results are presented in Section 4.

Open Control Architectures
ITTC, University of Kansas

7

• Contr ibution to Open Control Community – this task involves contribution of the

experiences of the study conducted during this work to the Open Control community as

technical report. The contributions are outlined in Section 7.

2 Study of Cisco’s VSI as Switch Control Inter face

2.1 VSI Operation Model

VSI is implemented in BPX 8600 using distributed slave model where each BXM card in the BPX

switch is a VSI slave and communicates with the controller and other slaves when processing VSI

commands. The operation model of VSI is shown in figure 1. The controllers establish link

between the master and every slave on the switch and the slaves in turn establish links between

each other.

 Connection between master and slaves

 Connection between slaves

Figure 1 – Logical view of VSI master-slave connections

MPLS Controller

VSI Master

VSI Slave

VSI Slave VSI Slave

VSI Slave

Control Port

Controlled
port

Controlled
port

Controlled
port

ATM Switch

Open Control Architectures
ITTC, University of Kansas

8

2.2 Hardware and Software Requirements

BPX controller card type - BCC-4 or BCC-3-64

Controller Type IOS Software BPX Image BXM Firmware VSI Version

MPLS 12.0(5) T 9.2.10 MEA VSI 2.2

PNNI/MPLS 12.0(5) T 9.2.23 MEA VSI 2.2

PNNI and

MPLS

12.0(5) T 9.2.30 MEA VSI 2.2

Table 1: Minimum software/hardware requirements for configuration of VSI MPLS

partitions and controllers

2.3 Configuration of VSI Label Switch Controlled par tition

Figure 2 - VSI test set up

9.1

Jake
(Cisco 7500)

Blutto
(BPX 8620)

ATM 0/0/0

9.3

MPLS Controller
Drag

(Cisco 7200)

9.2

9.4

Snag
(Cisco 7200)

KCTagRouter
(Cisco 7200)

MPLS Controller

9.1

kctagbpx
(BPX 8600)

ATM 1/0

9.2

ATM 6/0

ATM
6/0

2.2.2.1 2.2.3.62.2.2.4

Open Control Architectures
ITTC, University of Kansas

9

Configuration Steps

Configuration of LSC partition involves the following steps:

(i) Enabling the interfaces

The BXM cards or switch interfaces should be in "Standby" or "Active" active state, if not do

’resetcd 9 h’ (slot number is 9) to reset the card. Then the trunks are enabled using ’uptrk

<slot.port>’ command.

(ii) Creation of Label Switch partition in blutto (BPX)

Partitions are created in BPX switch software using ’cnfrsrc’ command. Initially all the switch

resources are used by the Automatic Routing Management or auto-route. Using the ’cnfrsrc’

command resources like bandwidth, label ranges and connections (LCNs) are allocated on each

switch port for the LSC partition.

 cnfrsrc 9.2
 PVC LCNs: [0] {accept default value}
 max PVC bandwidth[0]: 0
 Edit VSI Parms? [N]: y
 partition: 1
 enabled: e
 VSI min LCNs: 0
 VSI max LCNs: 7000 {varies with BXM type }
 VSI start VPI: 2
 VSI end VPI: 3
 VSI min b/w: 352207
 VSI max b/w: 352207
Or
cnfrsrc 9.2 0 0 y 1 e 0 7000 2 3 352207 352207

(iii) Adding a controller for the partition

The 7200/7500 router is added as LSC using ‘addshelf’ command by specifying the physical port

of the switch to which it is connected and the partition the controller intends to control. Here the

feeder type is set to "vsi" or simply "v". To add PNNI controller the feeder type is set to "X".

addshelf 9.4 vsi 2 1

Here 9.4 is the port number, the controller id is 2 and partition used is 1. If a partition has two

controllers, the controller ID helps the switch software to differentiate between them.

Open Control Architectures
ITTC, University of Kansas

10

Command ‘ tag-control-protocol vsi’ enables VSI on the ATM interface of the LSC. Once the

router box is attached to the BPX as an LSC for a partition, the switch ports that are included in the

partition controlled by the router become the “extended interfaces” or XTagATM interfaces. For

each XTagATM interface, a control VC and a range of VPI for label space are automatically

configured at the LSC. The configuration at the LSC is shown below.

At the Router /Controller :

drag(config)# interface ATM6/0
drag(config-if)# no ip address
drag(config-if)# no ip directed-broadcast
drag(config-if)# no ip route-cache distributed
drag(config-if)# tag-control-protocol vsi id 2
drag(config-if)# no atm ilmi-keepalive
!
drag(config)# interface XTagATM92
drag(config-if)# ip unnumbered Loopback0
drag(config-if)# ip directed-broadcast
drag(config-if)# extended-port ATM6/0 bpx 9.2
drag(config-if)# tag-switching atm control-vc 2 40
drag(config-if)# tag-switching atm vpi 2-3
drag(config-if)# tag-switching ip
!
drag(config)# interface XTagATM93
drag(config-if)# ip unnumbered Loopback1
drag(config-if)# no ip directed-broadcast
drag(config-if)# extended-port ATM6/0 bpx 9.3
drag(config-if)# tag-switching atm control-vc 4 32
drag(config-if)# tag-switching atm vpi 3-4
drag(config-if)# tag-switching ip

The management of resources on the VSI slaves requires that each slave in the BPX have a

communication control VC to each of the controllers attached to the switch. When a controller is

added to the BPX with the ‘addshelf’ command, the BCC sets up the set of master-slave

connections between the new controller port and each of the active slaves in the switch. The

connections are set up using a well-known VPI.VCI. The value of the VPI is 0. The value of the

VCI is (40 + (slot - 1)), where slot is the physical slot number of the slave.

In our test setup, once drag is configured as LSC using 'tag-control-protocol vsi' the controller

creates a PVC 0/48 through which it creates master-slave control channels (since slot 9 contains the

VSI slave entity). The maximum number of BXM slots possible in BPX is 15 out of which two

should be BCC. It can be observed from the output of ‘show atm vc’ shown below that drag has

Open Control Architectures
ITTC, University of Kansas

11

created 14 channels with BXM slaves in order to establish connection with VSI slaves that could be

present in any or all of the remaining slots.

Cross-connects in blutto:
drag#sh xtagatm cross-connect
Phys Desc VPI/VCI Type X-Phys Desc X-VPI/VCI State
0.9.2.0 2/39 -> 0.9.3.0 4/39 UP
0.9.2.0 2/35 -> 0.9.3.0 4/37 UP
0.9.2.0 2/37 -> 0.9.4.0 4/39 UP
0.9.2.0 2/33 -> 0.9.4.0 4/38 UP
0.9.2.0 2/42 <- 0.9.3.0 4/48 UP
0.9.2.0 2/38 <- 0.9.3.0 4/46 UP
0.9.2.0 2/36 <- 0.9.4.0 4/41 UP
0.9.2.0 2/34 <- 0.9.4.0 4/40 UP
0.9.2.0 2/40 <-> 0.9.4.0 2/32 UP
0.9.3.0 4/48 -> 0.9.2.0 2/42 UP
0.9.3.0 4/46 -> 0.9.2.0 2/38 UP
0.9.3.0 4/38 -> 0.9.4.0 4/37 UP
0.9.3.0 4/36 -> 0.9.4.0 4/36 UP
0.9.3.0 4/39 <- 0.9.2.0 2/39 UP
0.9.3.0 4/37 <- 0.9.2.0 2/35 UP
0.9.3.0 4/35 <- 0.9.4.0 4/35 UP
0.9.3.0 4/33 <- 0.9.4.0 4/34 UP
0.9.3.0 4/32 <-> 0.9.4.0 4/32 UP
0.9.4.0 4/41 -> 0.9.2.0 2/36 UP
0.9.4.0 4/40 -> 0.9.2.0 2/34 UP
0.9.4.0 4/35 -> 0.9.3.0 4/35 UP
0.9.4.0 4/34 -> 0.9.3.0 4/33 UP
0.9.4.0 4/33 <-> 0.9.2.0 2/40 UP
0.9.4.0 4/32 <-> 0.9.3.0 4/32 UP
0.9.4.0 4/39 <- 0.9.2.0 2/37 UP
0.9.4.0 4/38 <- 0.9.2.0 2/33 UP
0.9.4.0 4/37 <- 0.9.3.0 4/38 UP

Master slave channels:

drag#sh atm vc
 VCD / Peak Avg/Min Burst
Interface Name VPI VCI Type Encaps SC Kbps Kbps Cells Sts
6/0 1 0 40 PVC SNAP UBR 155000 UP
6/0 2 0 41 PVC SNAP UBR 155000 UP
6/0 3 0 42 PVC SNAP UBR 155000 UP
6/0 4 0 43 PVC SNAP UBR 155000 UP
6/0 5 0 44 PVC SNAP UBR 155000 UP
6/0 6 0 45 PVC SNAP UBR 155000 UP
6/0 7 0 46 PVC SNAP UBR 155000 UP
6/0 8 0 47 PVC SNAP UBR 155000 UP
6/0 9 0 48 PVC SNAP UBR 155000 UP
6/0 10 0 49 PVC SNAP UBR 155000 UP
6/0 11 0 50 PVC SNAP UBR 155000 UP
6/0 12 0 51 PVC SNAP UBR 155000 UP

Open Control Architectures
ITTC, University of Kansas

12

6/0 13 0 52 PVC SNAP UBR 155000 UP
6/0 14 0 53 PVC SNAP UBR 155000 UP

(iv) Deleting a controller

A controller can be disassociated from a BPX partition using ’delshelf’ command by specifying the

physical port of the switch to which the controller is connected. Disabling the ATM control

interface at the controller can also disable the controller.

At blutto:

delshelf 9.4

2.4 Multiple Par titioning

VSI with release 9.2.x supports a total of three partitions with one partition of each type given

below:

• Automatic Routing Management

• Label Switch Controlled partition

• PNNI controlled partition

Automatic Routing Management or auto-route is a default partition that is controlled by the BPX

switching software itself. Any remaining bandwidth resources after the creation of MPLS or PNNI

partition are automatically taken over by the auto-route management. The resources that are

partitioned among the different partitions are:

• LCNs

• Bandwidth

• VPI range

Even though the resources are configured and allocated per interface, the pool of resources like

LCNs are maintained at switch level. Table 2 gives the limits on port groups and LCN’s supported

by the various BXM card types.

Open Control Architectures
ITTC, University of Kansas

13

BXM Card Type No. Of Port

groups

Port Group Size LCN Limit per

Port Group

Average

Connections per

Port

8-T3/E3 1 8 ports 16K 2048

12-T3/E3 1 12 ports 16K 1365

4-OC3 2 2 ports 8K 4096

8-OC3 2 4 ports 8K 2048

1-OC12 1 1 ports 16K 16384

2-OC12 2 1 ports 8K 8192

Table 2 – The limit on number of por t groups, their sizes and limit on number of LCNs per

por t group

Por t groups and LCNs in BPX (blutto):

Command: dspchuse 9
Channel Management Summary for Slot 9
 mx chans tot used avail nw used pvc cnfg vsi vcs vsi cnf
card 9 :16320 15930 390 1084 2 244 14600
portgrp 1:8160 7774 386 542 0 232 7000
portgrp 2:8160 8156 4 542 2 12 600

The maximum number of cards that can be controlled by external controller in the switch is 12.

(since two of the 15 slots need to have BCC cards and one need to have an ASM card). Therefore

maximum of 12 LCNs in a directly connected slave are required for each controller attached to the

BPX. For each slave that is not directly connected, the master-slave control VC consists of two legs

one from the VSI master to the backplane through the directly connected slave, and second leg

from the backplane to the corresponding VSI slave (figure 1). Hence 1 LCN is required in each of

the slaves which are not directly connected to the controller attached to the shelf. These LCNs will

be allocated from the auto-route pool. This pool is used by auto-route to allocate LCNs for

connections and networking channels. Hence for a given slave the number of VSI management

LCNs required from the common pool is n × 12 + m

where

n is the number of controllers attached to this slave,

m is the number of controllers in the switch directly attached to other slaves

Open Control Architectures
ITTC, University of Kansas

14

The VSI partitioning has the following characteristics and limitations.

• Once partitions are created, dynamic re-allocation of resources between MPLS and PNNI

partitions is not allowed. But the resources of the auto-route partition can be redistributed to

MPLS or PNNI partition. Partition resources can only be increased.

• No multiple partitions on virtual trunks (section 2.6) are allowed. Virtual trunk is managed by

either auto-route or a single VSI partition

• Only one controller can be connected to a BPX port (also called as trunk).

WAN switching software release 9.3 for BPX that is released recently will support a total of three

MPLS partitions apart from auto-route. But both MPLS and PNNI partitions cannot coexist as in

release 9.2.

2.5 Configuration of VSI master redundancy

VSI supports exclusive redundancy i.e., only one of the controllers can be active in a partition at

any time. When a redundant controller is added using ‘addshelf’ command, the newly added LSC

takes control of the switch partition. The release notes of 9.2.x claimed to support another type of

redundancy where multiple LSCs are active in the same partition providing load balancing. But the

feature was not found to be present in 9.2.x releases, and in release 9.3 the reference to this type of

redundancy is not present.

2.5.1 Configuration commands

The test setup is shown in Figure 2. drag has already been configured as the controller of an MPLS

partition following the steps in section 2.3. The connections in the switch and the OSPF routes in

the controller (drag) are shown below.

Routes at controller (drag)

drag#sh ip route
Gateway of last resort is 129.237.127.254 to network 0.0.0.0
 2.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
O 2.2.3.2/32 [110/2] via 2.2.3.2, 00:00:16, XTagATM93
S 2.2.2.0/24 is directly connected, Null0

Open Control Architectures
ITTC, University of Kansas

15

O 2.2.2.1/32 [110/2] via 2.2.2.1, 00:00:16, XTagATM92
C 2.2.3.0/24 is directly connected, Loopback1
C 2.2.2.4/32 is directly connected, Loopback0
 3.0.0.0/32 is subnetted, 1 subnets
O 3.1.1.1 [110/2] via 2.2.3.2, 00:00:16, XTagATM93
 8.0.0.0/32 is subnetted, 1 subnets
O 8.1.1.1 [110/2] via 2.2.2.1, 00:00:16, XTagATM92
 129.237.0.0/21 is subnetted, 1 subnets
C 129.237.120.0 is directly connected, Ethernet3/0
S* 0.0.0.0/0 [1/0] via 129.237.127.254

Configuration of jake as redundant controller

(i) Add new shelf at port 9.1 to the BPX

A new shelf or a controller box can be added to the BPX using ’addshelf’ command and the

controller ID differentiates between the already existing LSC drag and the new LSC jake. The

default value of controller id is 1.

At blutto:

addshelf 9.1 vsi 1 1

After the addition, the XTagATM interfaces of jake comes up and jake gets the information of the

switch regarding existing connections and takes over the control of all switch resources.

(ii) Enabling the router to run VSI on controller port

At redundant controller (jake)

jake(config)# interface ATM0/0/0
jake(config-if)# no ip address
jake(config-if)# no ip directed-broadcast
jake(config-if)# no ip route-cache distributed
jake(config-if)# tag-control-protocol vsi
jake(config-if)# no atm ilmi-keepalive
!
jake(config)# interface XTagATM92
jake(config-if)# ip unnumbered Loopback0
jake(config-if)# ip directed-broadcast
jake(config-if)# extended-port ATM0/0/0 bpx 9.2
jake(config-if)# tag-switching atm control-vc 2 40
jake(config-if)# tag-switching atm vpi 2-3
jake(config-if)# tag-switching ip
!
jake(config)# interface XTagATM93
jake(config-if)# ip address 192.168.20.2 255.255.255.0
jake(config-if)# no ip directed-broadcast
jake(config-if)# extended-port ATM0/0/0 bpx 9.3
jake(config-if)# tag-switching atm control-vc 4 32

Open Control Architectures
ITTC, University of Kansas

16

jake(config-if)# tag-switching atm vpi 3-4
jake(config-if)# tag-switching ip

Routes at jake after configuration after addshelf

jake#sh ip route
Gateway of last resort is 129.237.127.254 to network 0.0.0.0
 2.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
O 2.2.3.2/32 [110/2] via 2.2.3.2, 00:00:16, XTagATM93
C 2.2.2.0/24 is directly connected, Loopback0
O 2.2.2.1/32 [110/2] via 2.2.2.1, 00:00:16, XTagATM92
C 2.2.3.0/24 is directly connected, Loopback1
C 192.168.90.0/24 is directly connected, ATM1/0/0
 3.0.0.0/32 is subnetted, 1 subnets
O 3.1.1.1 [110/2] via 2.2.3.2, 00:00:16, XTagATM93
 8.0.0.0/32 is subnetted, 1 subnets
O 8.1.1.1 [110/2] via 2.2.2.1, 00:00:17, XTagATM92
 129.237.0.0/21 is subnetted, 1 subnets
C 129.237.120.0 is directly connected, Ethernet6/1/0
 10.0.0.0/30 is subnetted, 1 subnets
C 10.0.0.0 is directly connected, FastEthernet6/0/0
S* 0.0.0.0/0 [1/0] via 129.237.127.254

Cross-connects at blutto after addshelf:
jake#sh xtagatm cross-connect
Phys Desc VPI/VCI Type X-Phys Desc X-VPI/VCI State
0.9.1.0 2/43 -> 0.9.2.0 2/36 UP
0.9.1.0 2/42 -> 0.9.2.0 2/34 UP
0.9.1.0 2/35 -> 0.9.3.0 4/35 UP
0.9.1.0 2/34 -> 0.9.3.0 4/33 UP
0.9.1.0 2/33 <-> 0.9.3.0 4/32 UP
0.9.1.0 2/32 <-> 0.9.2.0 2/40 UP
0.9.1.0 2/41 <- 0.9.2.0 2/37 UP
0.9.1.0 2/40 <- 0.9.2.0 2/33 UP
0.9.1.0 2/39 <- 0.9.3.0 4/40 UP
0.9.1.0 2/38 <- 0.9.3.0 4/38 UP
0.9.1.0 2/37 <- 0.9.3.0 4/36 UP
0.9.2.0 2/39 -> 0.9.3.0 4/39 UP
0.9.2.0 2/35 -> 0.9.3.0 4/37 UP
0.9.2.0 2/37 -> 0.9.1.0 2/41 UP
0.9.2.0 2/33 -> 0.9.1.0 2/40 UP
0.9.2.0 2/38 <- 0.9.3.0 4/48 UP
0.9.2.0 2/36 <- 0.9.1.0 2/43 UP
0.9.2.0 2/34 <- 0.9.1.0 2/42 UP
0.9.2.0 2/40 <-> 0.9.1.0 2/32 UP
0.9.3.0 4/48 -> 0.9.2.0 2/38 UP
0.9.3.0 4/40 -> 0.9.1.0 2/39 UP
0.9.3.0 4/38 -> 0.9.1.0 2/38 UP
0.9.3.0 4/36 -> 0.9.1.0 2/37 UP
0.9.3.0 4/39 <- 0.9.2.0 2/39 UP
0.9.3.0 4/37 <- 0.9.2.0 2/35 UP
0.9.3.0 4/35 <- 0.9.1.0 2/35 UP

Open Control Architectures
ITTC, University of Kansas

17

0.9.3.0 4/33 <- 0.9.1.0 2/34 UP
0.9.3.0 4/32 <-> 0.9.1.0 2/33 UP

Master -slave channels at jake:

jake#sh atm vc
 VCD/ Peak Avg/Min Burst
Interface Name VPI VCI Type Encaps SC Kbps Kbps Cells Sts
6/0 1 0 40 PVC SNAP UBR 155000 UP
6/0 2 0 41 PVC SNAP UBR 155000 UP
6/0 3 0 42 PVC SNAP UBR 155000 UP
6/0 4 0 43 PVC SNAP UBR 155000 UP
6/0 5 0 44 PVC SNAP UBR 155000 UP
6/0 6 0 45 PVC SNAP UBR 155000 UP
6/0 7 0 46 PVC SNAP UBR 155000 UP
6/0 8 0 47 PVC SNAP UBR 155000 UP
6/0 9 0 48 PVC SNAP UBR 155000 UP
6/0 10 0 49 PVC SNAP UBR 155000 UP
6/0 11 0 50 PVC SNAP UBR 155000 UP
6/0 12 0 51 PVC SNAP UBR 155000 UP
6/0 13 0 52 PVC SNAP UBR 155000 UP
6/0 14 0 53 PVC SNAP UBR 155000 UP

Control VCs at drag

drag#sh xtagatm cross-connect
Phys Desc VPI/VCI Type X-Phys Desc X-VPI/VCI State
0.9.2.0 2/40 <-> 0.9.4.0 2/32 UP
0.9.3.0 4/32 <-> 0.9.4.0 4/32 UP
0.9.4.0 2/32 <-> 0.9.2.0 2/40 UP
0.9.4.0 4/32 <-> 0.9.3.0 4/32 UP

LSC information at blutto

Command: dspctrlrs
BPX 8620 VSI controller information
Ctrl Id Part Id Trunk Ctrlr Type Intfc Type Name
 1 1 9.1 VSI VSI VSI
 2 1 9.4 VSI VSI VSI

2.5.2 Application of exclusive redundancy

This type of redundancy can be used to perform hitless software or hardware upgrades in an active

LSC. But if an active LSC crashes or ceases to function, then the other LSC does not take over

automatically. The new LSC should be attached to the switch administratively using ‘addshelf’ . In

the intermediate period, all the control packets (e.g., TDP) destined to the LSC will be discarded.

Open Control Architectures
ITTC, University of Kansas

18

The neighbor LSRs may also stop sending TDP or LDP messages if the LSC does not send LDP

keepalive packets at regular intervals.

2.6 Vir tual Trunks

A trunk is nothing but a physical port or interface in the BPX switch. A virtual trunk is a logical

trunk defined over a public ATM service. It is used to connect to a public ATM network through

VPC. Using an additional level of reference called virtual trunk number denotes a virtual trunk.

Within the public ATM cloud, virtual trunk is equivalent to one VPC.

Note: Virtual trunking feature needs to be separately enabled through a request to CISCO TAC.

.

Figure 3 – Vir tual Trunks across public ATM network

To configure a virtual trunk numbered 1 in interface 4.3 use

uptrk 4.3.1 to activate the virtual trunk

cnftrk 4.3.1 to set up VPI values and trunk parameters

cnfrsrc 4.3.1 to enable the partition

The BXM card in the BPX has 31 virtual interfaces and each interface has queues and buffers

assigned to it. One virtual interface is assigned to each logical (physical or virtual) trunk when the

Open Control Architectures
ITTC, University of Kansas

19

trunk is enabled. Each virtual trunk uses one of the 31 total virtual interfaces present in the BXM.

The allocation of virtual interfaces to logical trunks is shown in figure 4. Sixteen qbins are assigned

to each virtual interface. Qbins 0-9 are used by Auto Route and 10-15 are used by VSI. Virtual

trunk resources can be allocated to either MPLS/PNNI partition.

Figure 4 – BXM vir tual inter faces and qbins

2.7 Configuration of Service Classes

VSI allows the controller to create connections with desired QoS parameters. Class of Service

Templates (CoS Templates) provide a means of mapping the connection control parameters of the

switch to controller platform specific extender parameters. LSC understands IP CoS parameters and

to create a connection, the CoS parameters need to be translated to BPX ATM QoS parameters.

2.7.1 Class of Service Templates

Each VC that is created is served through one of a number of Class of Service buffers called qbins

and the qbins are differentiated by their QoS characteristics. When the port is enabled using ‘uptrk’ ,

a set of default service templates consisting of default QoS parameters are loaded from the BCC to

Open Control Architectures
ITTC, University of Kansas

20

the BXM. The service templates contain two classes of data. One class consists of parameters

necessary to establish a connection (i.e., per VC) and includes entries such as UPC actions, various

bandwidth- related items and per VC thresholds. The second class of data items includes those that

are necessary to configure the associated qbins that provide QoS support. The service class

template and qbin values can be modified using ’cnfsct’ and ’cnfqbin’ commands.

The general types of parameters passed from a VSI Master to a Slave include

• a service type identifier,

• QOS parameters (CLR, CTD, CDV),

• Bandwidth parameters (for example PCR, MCR),

• Other ATM Forum Traffic Management 4.0 parameters

When a connection setup request is received from the VSI master in the LSC, the VSI slave uses

the service type identifier to index into a CoS Template database containing extended parameter

settings for connections matching that index. The slave uses these values to complete the

connection setup and program the hardware.

Service Class Template information from Blutto

Command: dspsct
Service Class Templates
Template Name
 1 MPLS1
 2 ATMF1
 3 ATMF2

Command: dspsct 1
Service Class Qbin
 Default 13
 Signaling 10
 Tag0 10
 Tag1 11
 Tag2 12
 Tag3 13
 Tag4 10
 Tag5 11
 Tag6 12
 Tag7 13
 TagAbr 14

Open Control Architectures
ITTC, University of Kansas

21

Command: dspsct 1 Tag0
Service Template: MPLS1 (1)
Service Category Tag0 (200)
Qbin 10
UPC Enable NONE
Scaling Class Scaled 1st
CAC Treatment LCN
VC Max Threshold 61440 (cells)
VC Dscd Selection EPD
VC CLP High 100 (% of Vc MAX Threshold)
VC EPD 40 (% of Vc MAX Threshold)

Command: dspqbin 9.2 10
Qbin Database 9.2 on BXM qbin 10 (Configured by MPLS1 Template)
 (EPD Enabled on this qbin)
Qbin State: Enabled
Discard Threshold: 105920 cells
EPD Threshold: 95%
High CLP Threshold: 100%
EFCI Threshold: 100%

2.7.2 Configuration of MPLS Class of Service

Service providers can use premium services to achieve traffic differentiation for supporting

preferred services like VPN. Type of Service (ToS) byte in the IP header is looked up to get the

level of preference of the packet. The mapping of ToS byte to CoS type is given in Table – 3.

In MPLS, each LSR requests a label VC from its downstream neighbor for each destination prefix

called FEC. To forward traffic based on CoS type, each LSR sets up four label VCs, each VC

created with QoS parameters required to get traffic differentiation.

Class of Service Type TOS byte values

Available 0/4

Standard 1/5

Premium 2/6

Control 3/7

Table 3 – Different IP service types and corresponding TOS byte value

Open Control Architectures
ITTC, University of Kansas

22

The LSC through VSI creates these label VCs with appropriate CoS parameters. Traffic

differentiation is achieved by setting aside bandwidths for each type of traffic. For example,

premium traffic can be allocated 40% bandwidth, control 30% and available the remaining 30%.

This is the only form of controlling the traffic differentiation from the MPLS controller. The

command ‘ tag-switching atm cos’ is used to allocate desired bandwidth to traffic of specified CoS

type. The command below assigns 50% of the bandwidth of the switch interface to premium traffic.

jake(config-if)#tag-switching atm cos premium 50

The QoST group [6] at KU studied the working and performance of MPLS CoS. We have

presented here the test setup (Figure 5) and results for reference.

Figure 5 - QoS test setup

Qost 2
(Linux Host)

Qost 3
(Linux Host)

Qost 1
(Linux Host)

Drag
(Cisco 7200)

Jake
(Cisco 7500)

KCTagRouter
(Cisco 7200)

Snag
(Cisco 7200)

KCTagBPX
(BPX 8600)

Blutto
(BPX 8600)

Open Control Architectures
ITTC, University of Kansas

23

2.7.3 Test results

Traffic streams are generated from qost2 and qost3 to qost1 using Netspec [7] tool. Table 4

presents the results of the CoS experiment. Each row shows the percentage bandwidth allocated to

specified precedence, the transmitted and received throughputs. The received throughputs are less

compared to the transmitted throughput predominantly due to low UDP throughputs at 7200 routers

(edges) at OC3 speeds.

The results indicate noticeable service differentiation achieved using MPLS CoS. It can also be

noted that the bandwidth allocated is not strict and all the traffic types get some share of bandwidth.

For example, test #5 shows that even if all the bandwidth is allocated to premium, the control

traffic is given some bandwidth.

Test #
Bandwidth
Allocation

Source Precedence Transmitted
Thruput
(Mbps)

Received
Thruput
(Mbps)

Qost2 0 133.851 22.8791 100%
available

Qost3 0 133.834 23.284

Qost2 2 133.827 15.4462 100%
available

Qost3 3 133.833 29.261

Qost2 2 133.841 19.6933 100%
control

Qost3 3 133.852 27.550

Qost2 2 133.845 32.2544 100%
premium

Qost3 0 133.837 11.571

Qost2 2 133.830 32.0655 100%
premium

Qost3 3 133.848 11.744

Qost2 2 133.847 22.9346 50%
available
50%
premium

Qost3 3 133.838 23.583

Table 4 – Results of CoS test results conducted by QoST project

Open Control Architectures
ITTC, University of Kansas

24

2.8 Protocol or software upgrades

• VSI 1.1 and VSI 2.2 are not interoperable.

• Upgrade of WAN switching software may also require new BXM firmware versions. All the

connections in the switch will not be lost. But there will be a temporary disruption of

connectivity.

3 Cplane’s SSDK

Cplane’s Switchlet Service Development Kit (SSDK) [8] versions 1.0 and 2.0 enable an ATM

switch to be partitioned into switchletsTM that are nothing but switch partitions. Cplane uses

GSMPv1 as the control interface.

3.1 Hardware and Software Requirements

The ssdk2.0 is available for Linux/x86 and Solaris 2.6 environments. The partition manager runs

FORE ASX200BX switch with modified ForeThought 5.3 image. Libraries of GSMPv1 client

software for the controller are provided with SSDK and the GSMP server running at the slave or

switch is integrated in to FORE switch image S_ForeThought_5.3.0.

3.2 Management Inter face

The SSDK provides three kinds of interfaces to access the divider or partitioning software in the

switch such as CORBA, RPC and SNMP. The partitioning software is accessed through Linux or

Solaris boxes to create/delete and to manage partitions. The easiest way to interface with the

divider in the switch is through RPC. The switch divider listens on TCP port 10105 and any port

can be used at the host side. RPC interface is used as below. The divider can also be directly

connected to the switch through an ATM interface.

host% rpc_client <-tcp|-atm> -remotehost <remote host> -remoteport
<remote port> -localport <local port>

Open Control Architectures
ITTC, University of Kansas

25

3.3 Par tition Management

The various components of the partition management system and the interaction between them are

shown in Figure 6.

Figure 6 - The switchlet based open controller with onboard divider

3.3.1 Par tition Configuration file

For each partition that is to be created, a partition configuration file is required. A sample partition

configuration file is given in Appendix. It contains the following details.

• the interface that the controller or control architecture would use (e.g., GSMP, TCP, UDP),

• the port number through which the controller would communicate with the switch,

• the physical ports that the controller will control,

• the resources (label space, bandwidth) allocated for the partition.

3.3.2 Creation and deletion of switch par titions

The partition manager in the FORE switch is accessed through RPC interface as mentioned in

section 3.2.

Controller

GSMP Client

Partition Manager

PMI Client

Switch

PMI Server GSMP Server

Open Control Architectures
ITTC, University of Kansas

26

To create a new par tition

createSwitchlet <switchlet ID> <switchlet config file>

Switchlet or partition ID is a 32-bit integer that is used to identify the partition and the switchlet

config file is a file similar to the one given in Appendix.

To create a switchlet 0 in a switch:

dividerMgr> createSwitchlet 0 SwitchletConfig-s0.txt
dividerMgr> PrintDividerMgrResponse::CreateSwitchletResp : msg_id
= 0, retval = MOD_default :DEC_noError
dividerMgr> getSwitchletIds
dividerMgr> PrintDividerMgrResponse::GetSwitchletIdsResp : msg_id
= 3, retval = MOD_default :DEC_noError
Number of switchlets = 1
Switchlet Id 0

DEC_noError indicates that the partition has been created successfully. The other messages

indicate some form of error like client is not connected to the divider, resource not available for

partition creation, the specified port does not exist or syntax error.

To create another switchlet or partition, give a different partition ID and new configuration file.

The resources specified in the new configuration file should not include those that are already

allocated to partition 1 (e.g., label space).

To delete a par tition:

deleteSwitchlet <switchlet ID>

The command returns DEC_noError if successful and returns appropriate error messages if the

operation fails.

3.3.3 Addition and shr inking of a par tition’s resources

3.3.3.1 Addition and removal of por ts

To add a switch por t to an existing par tition:

addPort <switchlet ID> <port resource config file>

Open Control Architectures
ITTC, University of Kansas

27

A port config file contains the physical port number, the logical port number to be assigned for the

port, the label space in the port for the partition and the bandwidth (Appendix). The controller will

address the port by its logical port number. The command returns DEC_noError on success

To remove a switch por t

removePort <switchlet ID> <logical port number>

3.3.3.2 Addition and removal of label space

To add or remove label space to an existing partition

addLabelSpace <switchlet ID> <logical port> <label space config file>

removeLabelSpace <switchlet ID> <logical port> <label space config file>

3.3.3.3 Addition and removal of bandwidth

To add or remove bandwidth to a partition

addBandwidth <switchlet ID> <logical port> <bandwidth config file>

removeBandwidth <switchlet ID> <logical port> <bandwidth config file>

3.4 Setting Service Categor ies for connections

SSDK2.0 supports creation of connections based on ATM Forum service categories.

setServiceCategories <switchlet ID> <logical port> <service category mask>

where service category mask is the bitwise OR of the values below.

bit 0 - ATM Forum UBR

bit 1 - ATM Forum CBR

bit 2 - ATM Forum rt VBR

bit 3 - ATM Forum nrt VBR

bit 4 - ATM Forum ABR

To allow connections of type UBR and CBR be created on logical port 1 of partition 1,

dividerMgr> setServiceCategories 0 1 3

Open Control Architectures
ITTC, University of Kansas

28

dividerMgr> PrintDividerMgrResponse::SetServiceCategoriesResp :
msg_id = 5, retval = MOD_default :DEC_noError

If any service category is not supported, the switch divider returns error message.

4 VSI Measurements

This section presents the results of measurements conducted using VSI with WAN switching

software release 9.2.23 for BPX and Cisco IOS 12.0 (7)T.

4.1 Methodology

All the measurements are taken using the debug timestamps provided by the Cisco 7200/7500

router that acts as LSC. The debug of the router shows all the events taking place along with the

timestamps. The router’s device driver records the timestamps as soon as the event occurs. Hence

the results reflect accurately the behavior or events that take place. Also in an off-board control

scenario, even if the resources in the switch are available in the switch partition, it is the view of the

controller that is of more importance in the event of putting the resources to use.

4.2 Connection setup and tear-down times

4.2.1 Single VC or Connection setup and teardown times

The process of creating a connection or VC involves

• transfer of VSI protocol message for VC creation from the master to the slave through the

control channel specifying the input and output ports in the switch,

• the transfer of information from the VSI software in the BPX to the various slaves (for each

interface) to complete the connection with specified QoS,

• notification from the slave to the controller that the connection set up is complete.

The creation of VC involves the traversal of different states

Open Control Architectures
ITTC, University of Kansas

29

DOWN -> ABOUT_TO_CONNECT
ABOUT_TO_CONNECT -> CONNECTING
CONNECTING -> UP.

Deletion of a VC or connection involves similar steps.

UP -> ABOUT_TO_DISCONNECT
ABOUT_TO_DISCONNECT -> DISCONNECTING
DISCONNECTING -> DOWN

Command ’debug vsi packets’ displays all the VSI packets that are exchanged between the VSI

master and the slave through the control channel in decoded form including the time these packets

arrive or leave the controller. The debug outputs in the LSC are used to measure the setup time with

resolution up to milliseconds. The results are shown in Table 5.

VSI Packet debugs

drag#debug vsi packets
00:24:46.581: VSI Master: conn 0x90400/4/51->0x90300/4/62:
DOWN -> ABOUT_TO_CONNECT
00:24:46.581: VSI Master: conn 0x90400/4/51->0x90300/4/62:
 ABOUT_TO_CONNECT -> CONNECTING
00:24:46.585: VSI Master: conn 0x90400/4/51->0x90300/4/62:
 CONNECTING -> UP

drag#debug vsi packets
 00:26:11.153: VSI Master: conn 0x90400/4/51->0x90300/4/62:
 UP -> ABOUT_TO_DISCONNECT
00:26:11.153: VSI Master: conn 0x90400/4/51->0x90300/4/62:
 ABOUT_TO_DISCONNECT -> DISCONNECTING
 00:26:11.165: VSI Master: conn 0x90400/4/51->0x90300/4/62:
 DISCONNECTING -> DOWN

Mean (ms) Std. Deviation (ms)

Setup time 11.407 5.93

Teardown time 16 9.3

Table 5 - Single Connection setup and teardown times

Open Control Architectures
ITTC, University of Kansas

30

4.2.2 Plot of Connection setup times Vs number of cross connect VCs

The timing of various VSI protocol events and timers play a major role in the setup times of

multiple connections. For this test, up to 50 loopback interfaces are created at kctagrouter and

advertised through OSPF. This triggers the creation of label VC’s by TDP. This test can be used to

measure the performance of VSI in creation/deletion of various number of cross connect VC’s or

label VCs.

Figure 7 – Setup times for multiple cross-connect VCs

Number of
Cross connects

14 32 50 72 90 110

Mean (Sec) 27.374 34.716 41.5 41.168 41.43 42.55
Standard
Deviation

1.7 2.06 1.74 0.53 1.16 1.98

Table 6 - Setup Time for multiple cross-connect VCs

The setup time in the result does not include the time taken for the controller to bring the

XTagATM interface up (results in section 4.3). The creation of VCs start after the enabling of

XTagATM interfaces.

The setup and deletion times for multiple connections are not linearly related (Figure 7). As the

number of connections created increases, we do not observe equal increase in the setup times. The

Open Control Architectures
ITTC, University of Kansas

31

setup time increases as the number of cross connects from 14 to 50 VC’s and then remains a

constant up to 110 VC’s as shown in Figure 7. One possible reason may be that VSI combines

many individual connection setup requests into a single message. Expectedly, similar results can be

observed for redundant controller also as shown in Figure 8.

Figure 8 - Setup times for multiple cross-connect VCs (Redundant Controller)

Number of
Cross connects

14 32 50 72 90 110

Mean (Sec) 31.99 33.452 39.2067 40.972 41.24 43.688
Standard
Deviation

1.308 1.003 2.2 0.54 3.6 1.8

Table 7 - Setup Time for cross connects (Redundant controller)

The deletion time for cross connections (Figure 9) increase significantly from 90 to 110 cross

connects but remains a constant up to 130 cross connections. The result should be due to the

aggregation of multiple delete requests in a single message

Open Control Architectures
ITTC, University of Kansas

32

Figure 9 - Deletion times for multiple cross-connects

4.3 Extended inter face up/down times

After the addition of controller to the switch, the VSI slave transfers the information of the

resources mentioned below to the controller.

• existing connections,

• bandwidth allocated to the partition

• label range on each port

• class of service buffer or qbin information

• to the master (LSC). The controller then views the switch interfaces as its own virtual interfaces

called extended or XTagATM interfaces.

After the addition of controller shelf at the BPX using ’addshelf’, there is time latency before the

XTagATM interfaces are enabled at the LSC. This time is measured by observing the router clock

at the instant of the executing of ’addshelf’ or ’delshelf’ command and the time the XTagATM

interface comes up (through the console log of the controller or router).

20:49:28.427 UTC Fri Jul 14 2000 ===> Clock at the time of
execution of ’addshelf’

Open Control Architectures
ITTC, University of Kansas

33

The console log when the interface state changes

Jul 14 20:49:40.831: %LINK-3-UPDOWN: Interface XTagATM92, changed
state to up
Jul 14 20:49:40.855: %LINK-3-UPDOWN: Interface XTagATM93, changed
state to up
Jul 14 20:49:41.831: %LINEPROTO-5-UPDOWN: Line protocol on
Interface XTagATM92, changed state to up
Jul 14 20:49:41.855: %LINEPROTO-5-UPDOWN: Line protocol on
Interface XTagATM93, changed state to up

*13:49:36.047 UTC Fri Jul 14 2000 ====> Clock at the time of
execution of ’delshelf’

*Jul 14 13:51:24.827: %LINK-3-UPDOWN: Interface XTagATM92, changed
state to down
*Jul 14 13:51:24.827: %LINK-3-UPDOWN: Interface XTagATM93, changed
state to down

Mean (sec) Std. Deviation (sec)

Single Controller 12.4928 4.3

Redundant Controller 7.1608 1.294

Table 8 – Time taken to br ing up the XTagATM inter face at the controller

Master -slave control channel deletion time

After a new LSC is added as redundant controller, the old LSC will have a channel to communicate

with the slave software in the switch. Even though the older LSC retains connectivity with the

slave, it does not take over the control of the partition in case the active LSC accidentally crashes or

ceases to function. And to make the older LSC active again, we need to delete it first using

’delshelf’ and then do ’addshelf’.

Mean (sec) Std. Deviation (sec)Master-slave control channel

deletion time 103.2608 3.62

Table 9 - Time taken for deletion of VSI Master-Slave control channel after delshelf

Open Control Architectures
ITTC, University of Kansas

34

4.4 Connectivity loss dur ing controller change

Exclusive redundancy can be used to provide hitless software/hardware upgrades. This test studies

the effect of the switch-over on the cells traversing already created cross-connects and the packets

destined for the LSC (or control packets like LDP) is also measured. Both are important

considerations for a provider network. Ideally, we would expect almost zero connectivity loss for

packets traversing the already created VCs and very minimal loss for packets destined for the LSC

extended interface. The set up is the same as in Figure 2.

1. The connectivity loss to the LSC is determined by sending ICMP echoes to the extended

interface of the controllers. ICMP echoes are sent from LER-2 to the extended interface 2.2.3.6.

Packets go to LSC-1 when it is active and to LSC-2 when it takes over.

2. The loss of the transit packets is found by sending ICMP echoes to the host for which the labels

are already established by the LSC. ICMP echoes are sent from LER-2 to LER-1. In this case,

through LDP direct VCs will be created between ports 9.2 and 9.3.

Configurations at snag (LER)

interface ATM6/0
 description to roots
 ip address 192.168.60.1 255.255.255.0
 no ip directed-broadcast
 no ip mroute-cache
 no atm ilmi-keepalive
!
interface ATM6/0.200 tag-switching
 ip unnumbered Loopback0
 no ip directed-broadcast
 tag-switching atm control-vc 4 32
 tag-switching atm vpi 4-5
 tag-switching ip

Configurations at kctagrouter (LER)

kctagrouter is the controller for ’kctagbpx’ which in turn is connected to ’blutto’.

interface ATM1/0
 no ip address
 no ip directed-broadcast
 tag-control-protocol vsi
 no atm ilmi-keepalive
!

Open Control Architectures
ITTC, University of Kansas

35

interface XTagATM92
 ip unnumbered Loopback0
 no ip directed-broadcast
 extended-port ATM1/0 bpx 9.2
 tag-switching atm control-vc 2 40
 tag-switching atm vpi 2-3
 tag-switching ip
!
interface XTagATM93
 no ip address
 no ip directed-broadcast
 extended-port ATM1/0 bpx 9.3
 tag-switching atm control-vc 3 32
 tag-switching atm vpi 3-4
 tag-switching ip
During the test, we observed a 36 second connectivity loss with 5 routes for both control and data

packets.

Ping output from Snag to the loopback inter face of controller (control packet)

snag#ping
Protocol [ip]:
Target IP address: 2.2.3.6
Repeat count [5]: 1000
Datagram size [100]: 1000
Timeout in seconds [2]:
Extended commands [n]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 1000000, 1000-byte ICMP Echos to 2.2.3.6, timeout is 2
seconds:
!!
!!
!!!..................!!!
!!
Success rate is 93 percent (228/246), round-trip min/avg/max =
1/1/8 ms

Ping output from Snag to kctagrouter (data packet)

snag#ping
Protocol [ip]:
Target IP address: 2.2.2.1 ==> snag to kctagrouter (data packet)
Repeat count [5]: 1000
Datagram size [100]: 1000
Timeout in seconds [2]:
Extended commands [n]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 1000, 1000-byte ICMP Echos to 2.2.2.1, timeout is 2
seconds:

Open Control Architectures
ITTC, University of Kansas

36

!!
!!
!!!.........
......!!
!!
!!!!!!!!!!
Success rate is 96 percent (325/340), round-trip min/avg/max =
1/3/4 ms

The reason for connectivity loss for control packet can be easily explained. During the switchover

period, the extended interface of the existing controller is brought down and that of the new

controller is brought up. When the redundant controller LSC-2 is brought up, i.e., the VSI slave at

the switch and master in LSC-2 establish connection, the OSPF database at LSC-2 does not contain

any routes and the database exchange process with LER-2 has to start again. This happens with

TDP process too. Consequently the label VCs are removed from the tag-forwarding table. When

the new controller comes up, the OSPF routes are discovered again and new label VCs are

obtained.

It can be observed that this connectivity loss time is for 5 routes. If the number of routes is more of

the order of a hundred or a thousand, the time taken depends on the time taken for the OSPF

routing daemon to discover the routes again from the neighbors. This result shows that traffic is

going to be hit no matter how fast the control interface is. This is because of the resynchronization

of the routers’ OSPF and TDP databases. Hence all the labels are withdrawn by LDP. To start

routing packets again, OSPF has to discover the routes again and LDP negotiation should be done.

The change in the label VCs in the tag forwarding table at snag before and after switch-over shows

that labels are re-negotiated.

Before switch-over

Tag Forwarding Table at snag

snag#sh tag-switching forwarding-table
Local Outgoing Prefix Bytes tag Outgoing Next Hop
tag tag or VC or Tunnel Id switched interface
26 4/42 2.2.2.1/32 0 AT6/0.200 point2point
27 4/36 2.2.2.4/32 0 AT6/0.200 point2point
28 4/38 2.2.3.6/32 0 AT6/0.200 point2point
29 4/44 4.1.1.2/32 0 AT6/0.200 point2point

Open Control Architectures
ITTC, University of Kansas

37

After switch-over

snag#sh tag-switching forwarding-table
Local Outgoing Prefix Bytes tag Outgoing Next Hop
tag tag or VC or Tunnel Id switched interface
26 4/54 2.2.2.1/32 0 AT6/0.200 point2point
27 4/36 2.2.2.4/32 0 AT6/0.200 point2point
28 4/38 2.2.3.6/32 0 AT6/0.200 point2point
29 4/56 4.1.1.2/32 0 AT6/0.200 point2point

5 Compar ison of VSI features with that of GSMP

5.1 Resource management

5.1.1 Creation of new par tition

In this section, the configuration complexity of Cisco VSI 2.0 in release 9.2.30 and Cplane’s GSMP

in SSDK 2.0 are compared.

VSI

Resources are set aside on each of the switch port for the new partition to be created. This is

achieved through ’cnfrsrc’ command for all the BPX ports. The number of ’cnfrsrc’ is equal to the

number of switch interfaces that are to be included in the partition. Partition resources can be added

or deleted using the same ‘cnfrsrc’ command. LSCs or PNNI controllers can be added using

‘addshelf’ command.

Cplane’s GSMP

The resources like ports, bandwidth and label ranges are included in the switchlet or partition

configuration file (Appendix) and 'createSwitchlet' command uses this file to create the partition.

The SSDK kit contains some default configuration files whose values can to be modified to include

resources. The controller can be connected to the ATM switch through any transport like UDP or

TCP.

VSI provides a much better and sophisticated command line interface for the creation/deletion of

partitions. But with Cplane’s SSDK, the controller host need not be directly connected to the switch

as in the case of VSI.

Open Control Architectures
ITTC, University of Kansas

38

5.1.2 L imit on number of par titions

VSI with BPX 9.2.x releases support two controlled partitions (one MPLS and one PNNI) and

auto-route partition. But VSI with release 9.3 supports up to three MPLS or PNNI partitions and

one Automatic Routing Management (auto-route) partition.

GSMP protocol does not set any limit on the number of partitions. But creation of large number of

partitions may not be useful for real-world scenarios. Presence of large number of partitions will

increase the difficulty of resource management in provider network. Hence it is desirable to have

number of partitions to manageable limit depending on the requirement and try to manage

resources effectively. For example, a provider can partition the switches in the network so that one

of the partition carries exclusively voice traffic and other partitions carrying data, or one of the

partitions carrying high preference (e.g., VPN) traffic and other partitions carrying normal traffic.

5.1.3 Dynamic par titioning

Dynamic partitioning allows the resources of the partitions to be dynamically increased, shrunk or

reallocated. For example, frequently the provider need to increase the capacity of their nodes. VSI

allows only the increase of partition resources. In many of the cases, increase of partition resources

is the most reasonable requirement.

But with GSMP, once a controller is attached to a partition, addition or removal of resources is not

possible. This is because GSMP protocol does not include message that the switch partitioning

software can use to inform the controller that the resources are added/removed. In this aspect, VSI

can be more beneficial than GSMP in that it decreases the resource management complexity.

5.2 Suppor t for different control planes

Open Control Architectures
ITTC, University of Kansas

39

GSMP protocol supports many control planes like MPLS, Q.2931, PNNI and Frame Relay. This is

mostly attributed to the fact that GSMP is an open protocol and has the contributions from larger

group of people. VSI supports only MPLS and PNNI controller types.

5.3 Suppor t for Redundancy

Redundancy is one of the best methods of providing fault tolerance in any networking system. In

provider or carrier networks carrying customer traffic, redundancy is almost inevitable. There are

two kinds of scenarios that need redundancy.

1. We have an LSC controlling a partition of a switch and it needs to be upgraded for some

reasons and we cannot afford to drop the control of the partition during this upgrade. Here the

disruption is administratively controlled and hence it may not be called redundancy in a strict

sense.

2. Providing general standby redundancy that automatically takes control when the primary goes

down. Standby redundancy can also be achieved using proprietary hardware backups provided

by the switch vendor (this can also be called hardware redundancy unlike protocol or software

redundancy).

Case 1 can be useless if the primary goes down unexpectedly and case 2 can be wastage of

resources of the standby controller. The optimum solution is to have two controllers in the same

partition and each of them assigned some subset of resources to control through administrative

configuration. If one of the controllers goes down or needs to be upgraded, the other controller

automatically takes over the orphaned section of the partition. This can also be termed as load

sharing which provides redundancy as well as efficient use of the controller. This can be effected

through redundant hardware or through control interface protocol. We would later argue that the

protocol solution is not efficient.

Cisco in the latest release proposes an indirect way of implementing load-sharing type of

redundancy. Configure two MPLS partitions controlled by two independent LSCs. The division of

the switch is dependent on the network operator. He may or may not choose to divide the partitions

equally. The actual and the logical network with equal cost multipath are shown in Figure 10.

Open Control Architectures
ITTC, University of Kansas

40

However, if one of the controllers fails, that portion is not taken over by any other controller. To

support near zero disruption of packets when one of the controllers goes down, one needs to use

hardware standby redundancy. Here a backup BPX port card that is connected to the redundant

LSC is required. This standby card will synchronize its state with the active card and on any

disruption, the standby card takes over. Each controller will store the internal state of the other

controller. This solution does not use the control interface (VSI) to maintain redundancy.

Figure 10 – LSC redundancy using IGP multipath

Multiple switch controllers may jointly control a single switch partition using GSMP. The

controllers may control a switch partition either in a primary/standby fashion or as part of multiple

LSC - 1 LSC - 2 LSC - 3 LSC - 4

Edge LSR Edge LSR

ATM switch ATM switch

Physical LSC Redundancy Network

Logical Equivalent

Edge LSREdge LSR ATM LSR - 1 ATM LSR - 2

ATM LSR - 3 ATM LSR - 4

Open Control Architectures
ITTC, University of Kansas

41

controllers providing load sharing for the same partition. It is the responsibility of the controllers to

co-ordinate their interactions with the switch partition. In order to assist the controllers in tracking

multiple controller adjacencies to a single switch partition, the Adjacency Update message is used

to inform a controller that there are other controllers using the same partition. It should be noted

that the GSMP does not include features that allow the switch to co-ordinate cache synchronization

information among controllers. The switch partition will service each command it receives in turn

as if it were interacting with a single controller. Controller implementations without controller

entity synchronization should not use multiple controllers with a single switch partition.

Results in section 4.4 show that packet loss is inevitable if the OSPF and LDP states of the

controllers are not synchronized. With large number of routes as present in the provider networks,

it is not efficient and feasible to allow for such packet losses. Even if the control interface (GSMP

or VSI) supports automatic switch over of controllers, it will not be a deployable solution at the

networks where the number of routes is large and reliability is very important. Hence hot standby

redundancy using hardware is better. Multipath solution is also an effective solution. But when one

of the LSCs goes down, the effective available bandwidth of the traffic is reduced by the capacity

of the partition whose LSC goes down. The choice of the type of redundancy depends on the

requirements of the network.

5.4 Suppor t for Service Models

As mentioned before, the motivation for going to off-board control is the need to support multiple

services. Open control provides the flexibility for the control software to evolve independently that

can create new and essential services. The service delivery problem can be handled in two ways.

One by making reservations right from the source to the destination or by defining some

forwarding classes that determine the level of priority or precedence to be assigned to the packet.

IntServ and ATM use the first method and Diff-Serv uses the other method. Some applications

need reservations whereas some applications may be satisfied with some increased performance.

The optimum way is to make reservations not in each switch or router but in each transit

Autonomous System (AS) and use the priority field in the packet to differentiate the packets within

a domain.

Open Control Architectures
ITTC, University of Kansas

42

VSI supports

• IP service types (MPLS partition),

• ATM Forum service categories (PNNI controlled partition).

The controller can use VSI to create connections of specified QoS parameters and type.

Connections in a Label switch partition can be created based on IP CoS parameters providing

desired bandwidth share for different IP traffic types (section 2.7.2).

The latest version of GSMP protocol (v3) will support various service types.

• ATM Forum Service Categories,

• Integrated Services,

• MPLS CR-LDP,

• Frame Relay,

• Circuit Emulation

Even though work on GSMPv3 is still not complete at IETF, GSMP is expected to support wider

range of service models due to its open nature.

5.5 Conclusions

Our study of the features of VSI and GSMP control protocols indicate that:

• VSI does not allow two LSC to be active in a partition; the redundancy supported is exclusive.

During the switch over to the redundant LSC, packet loss is inevitable. The time for recovery

will depend on the OSPF and LDP processes to discover routes and negotiate labels

respectively.

• The two effective methods for providing LSC redundancy will be hot standby redundancy and

multipath LSC redundancy. Such solutions are preferable to the solution provided by the

control protocol. Since GSMP does not support synchronization of LSC databases, such

solutions are good with GSMP too.

• GSMP supports wider range of control planes and service models than VSI.

Open Control Architectures
ITTC, University of Kansas

43

• GSMP does not support dynamic partitioning whereas VSI allows increasing of partition’s

resources. In this aspect, VSI gives better partition management capability.

• An open control interface like GSMP provides more avenues for improvement and

interoperability among multiple vendors.

6 Implementation of Open Control Architectures

The concept of off-board or open control is more relevant to ATM switches than IP routers due to

signaling present in ATM. The control interface of a switch allows the controller to setup and

modify the flow or connections through the switch or router. In IP routers, the notion of connection

or flow is not enforced. The forwarding is based only on the destination address. In ATM, the

notion is required at the call setup before any data is transferred. On the other hand off-board

control can be more appropriate for MPLS routers or switches that require signaling across a

domain before the transfer of data. This is true when MPLS is run on almost all device layers like

ATM, frame relay or DWDM switches. Also considering into account the emergence of IP as a

common network protocol, MPLS is more likely to be deployed widely than other control

architectures that do not use IP as network layer.

As the number of commercial organizations desire to use Internet more for their business and

marketing purposes, the demand for value added services also increases. Initially the providers

sought to provide service guarantees using connection-oriented ATM protocols. Approaches such

as Classical IP over ATM (CLIP) and Multi-Protocol over ATM (MPOA) achieve IP over ATM

operation by overlay model which limits network scalability. Another problem for the providers is

the complexity of managing large ATM networks. MPLS enables ATM switches to be fully

integrated into IP networks thereby improving scalability and reducing complex QoS translation

mechanisms. Standards also exist for MPLS on other link layers like Packet Over SONET (POS),

Frame Relay, DWDM and Ethernet.

The following are our efforts as part of this project for implementation of open control

architectures.

• to integrate missing functionality to the previous version of the implementation of offboard tag

control architecture

Open Control Architectures
ITTC, University of Kansas

44

• to integrate and test IP Class of Service (CoS) functionality to the KU implementation of MPLS

LDP

6.1 Implementation of offboard Tag Switching Architecture

Tag Switching, developed by Cisco systems a few years back, combines the performance and

virtual-circuit capabilities of link-level switching with the scalability, flexibility and robustness of

network routing. Tag switching, along with other Layer 3 switching schemes have been submitted

to the IETF Multi-Protocol Label Switching (MPLS) Working Group. The working group is

responsible for standardizing a base technology for using label swapping forwarding paradigm

(label switching).

6.1.1 Tag Switching Concepts

The tag is a short, fixed length identifier that is assigned to packets belonging to a certain flow of

date. A tag switching network consists of:

• Tag Edge Routers (TERs) that are located at the edge of the Tag Cloud.

• Tag Switch Routers (TSRs) that switch tagged packets based on the tags and may support Layer

3 routing or Layer 2 switching apart from Tag Switching.

Tag switching consists of two components:

• Forwarding Component - Responsible for forwarding packets based on the tag

• Control Component - Responsible for obtaining and maintaining tag using the Tag Distribution

Protocol (TDP) or extensions to existing routing protocols.

TERs and TSRs use standard routing protocols to identify routes through the network and fully

inter-operate with non-tag switching routers. Tag switches use the tables generated by the standard

routing protocols to assign and distribute tag information via the Tag Distribution Protocol (TDP).

6.1.2 The Tag Distr ibution Protocol (TDP)

Open Control Architectures
ITTC, University of Kansas

45

This section provides a brief description of the Tag Distribution Protocol (TDP) [11]. TDP runs

over a connection-oriented transport layer (primarily TCP) with guaranteed sequential delivery. It

provides a means for TSRs to distribute, request, and release tag binding information. To

communicate with other TSR the TDP establishes sessions. Sessions between two TSRs and

sessions among the same TSRs are all independent. TDP does not require any keepalive

notification from the transport, but implements its own keepalive timer.

The different types of Protocol Information Elements (PIEs) in TDP are:

• Type 0x100 TDP PIE OPEN – to start a new session with the neighbor

• Type 0x200 TDP PIE BIND – to provide label binding (by downstream TSR)

Type 0x300 TDP PIE REQUEST BIND – to request label binding (by upstream TSR)

• Type 0x400 TDP PIE WITHDRAW BIND – the LSR that provided the binding uses this

message to withdraw

• Type 0x700 TDP PIE RELEASE BIND – the LSR that requested the binding uses this message

to release the binding

• Type 0x500 TDP PIE KEEP ALIVE – keepalive message

• Type 0x600 TDP PIE NOTIFICATION- to notify the neighbor of error in a TDP message

KU offboard tag switching implementation uses the TCP/IP stack in Linux hosts, which we will

refer henceforth as Tag Switch Controller (TSC) nodes, for routing purposes. By looking up the

Linux routing table at the TSC node, TDP is initiated between a node and it's downstream neighbor

and tags are obtained. In this implementation, a tag is the same as an ATM VCI. The tags are

distributed and a Tag Information Base (TIB) is maintained at the tag switching nodes, based on the

network topology as reflected by the routing tables. Based on these distributed tags, appropriate

switched paths are set up across ATM switches that are controlled by these TSC nodes.

We implemented a TDP state machine and each of the TSC nodes maintains TDP state information.

This implementation supports Destination-based routing and Downstream-on-demand tag

allocation only. The TSCs communicate with the ATM switches via SNMP interface to establish

the tag switched paths.

Open Control Architectures
ITTC, University of Kansas

46

6.1.3 Implementation Environment and Tools

CMU’s SNMP library

linux-2.2.9 kernel and atm-0.59 with tag forwarding patch

Implementation of TDP

FORE ASX-200BX switches running Forethought 4.1 or Forethought 5.3

6.1.4 Implementation Structure

Each Linux host is associated with an ATM switch to function as a TSR (TSC + ATM Switch) in

our off-board implementation of Tag Switching. The implementation consists of TDP daemon that

implements TDP state machine and continuously monitors routing table, opens TDP sessions with

neighbors and gets/receives label bindings. The state machine consists of three independent

processes.

• wait_for_tdp_packets – waits for TDP packets on all interfaces and processes the

requests/messages from the TDP neighbors. This process implements a concurrent server and

spawns a new process for each new session.

• wait_for_tags_and_maintain_tib – waits for messages from different TDP processes on a

known port and installs/deletes tags/PVCs in the kernel and the ATM switch accordingly. This

process also creates VCs in the ATM switch using SNMP interface.

• dynamic_route_updater – monitors Linux routing table and on any route change initiates

request bind or withdraw operation. When a new binding is received from the neighbor for the

bind request, this process gets available free VC from ATM switch and sends request to the

known internal port for creation of VC at the host and the switch.

When a new route is added at the TSC, the daemon detects the change in route and initiates a new

TDP session with the next hop. The next hop TSC, on receiving a tag request, queries the ATM

switch it is controlling to get a free available VC, and returns the tag binding (destination, tag pair).

When the binding is complete, the module that gets the binding sends the tag information on well-

known internal port. The other module that listens on the internal port gets the binding information

and establishes appropriate switched paths based on the tag and the TIB. The SNMP protocol's

Open Control Architectures
ITTC, University of Kansas

47

GetNextRequestPDU is used to obtain free VCs on the switch and SetRequest-PDU is used for

connection setup/tear-down.

When a route present in the TIB is lost, the TSC sends withdraw or release message to the

appropriate neighbor and cleans up the VCs in the kernel and the ATM switch. The Linux kernel

especially the CLIP module is modified to incorporate the functionality of forwarding IP datagrams

segmented into ATM cells based on destination address lookups in the TIB and if not available,

route them based on kernel routing table.

The messages TDP PIE WITHDRAW BIND and TDP PIE RELEASE BIND were not

implemented in the previous implementation. Also the associated clean up of resources were not

implemented. The current work involves the implementation of these messages and the clean up of

resources when tag bindings become obsolete.

testbed24 testbed10 testbed23

Spot Spud Spot

to destinations
129.237.116.74,
129.237.125.222,
129.237.126.78

TDP signaling between peers

Physical Connections

Figure 11 - Tag Switching test setup

129.237.166.111 129.237.166.72 129.237.166.110

1A3

1A4

1A4

1A31A2

1A1

1A2

Open Control Architectures
ITTC, University of Kansas

48

6.1.5 Test Results

testbed24, testbed10 and testbed23 are TSCs connected to the switches spot and spud as shown in

Figure 11. testbed24 is the ingress, testbed10 is the core and testbed23 is the egress.

TDP database at the TSRs

testbed24% show tdp database
Destination Upstream Inbound tag Downstream Outbound tag
129.237.116.74 Ingress -1 129.237.166.72 102
129.237.125.222 Ingress -1 129.237.166.72 103
129.237.126.78 Ingress -1 129.237.166.72 104

testbed10% show tdp database
Destination Upstream Inbound tag Downstream Outbound tag
129.237.116.74 129.237.166.111 102 129.237.166.110 102
129.237.125.222 129.237.166.111 103 129.237.166.110 103
129.237.126.78 129.237.166.111 104 129.237.166.110 104

testbed23% show tdp database
Destination Upstream Inbound tag Downstream Outbound tag
129.237.116.74 129.237.166.72 102 Egress -1
129.237.125.222 129.237.166.72 103 Egress -1
129.237.126.78 129.237.166.72 104 Egress -1

PVCs in the TSCs

testbed24 [131] % more /proc/atm/pvc
Itf VPI VCI AAL RX(PCR,Class) TX(PCR,Class)
 0 0 102 5 0 UBR 0 UBR
 0 0 103 5 0 UBR 0 UBR
 0 0 104 5 0 UBR 0 UBR

No PVCs in the core, since all the traffic are directly switched.

testbed10 [131] % more /proc/atm/pvc
Itf VPI VCI AAL RX(PCR,Class) TX(PCR,Class)

testbed23 [185] % more /proc/atm/pvc
Itf VPI VCI AAL RX(PCR,Class) TX(PCR,Class)
 0 0 102 5 0 UBR 0 UBR
 0 0 103 5 0 UBR 0 UBR
 0 0 104 5 0 UBR 0 UBR

PVCs on switch spot

spot::configuration vcc> show
Input Output
Port VPI VCI Port VPI VCI UPC Protocol Name

Open Control Architectures
ITTC, University of Kansas

49

1A2 0 102 1A1 0 102 0 pvc N/A
1A2 0 103 1A1 0 103 0 pvc N/A
1A2 0 104 1A1 0 104 0 pvc N/A
1A3 0 102 1A4 0 102 0 pvc N/A
1A3 0 103 1A4 0 103 0 pvc N/A
1A3 0 104 1A4 0 104 0 pvc N/A

PVCs on switch spud (cross-connects at the core)

spud::configuration vcc> show
Input Output
Port VPI VCI Port VPI VCI UPC Protocol Name
1A2 0 102 1A3 0 102 0 pvc N/A
1A2 0 103 1A3 0 103 0 pvc N/A
1A2 0 104 1A3 0 104 0 pvc N/A

Route to 129.237.116.74 is deleted at testbed24 (ingress)

On route deletion at the ingress (testbed24), the ingress sends TDP PIE RELEASE BIND message

requesting testbed10 to release the binding. If the request is successful testbed10 still has the route,

it will now be the ingress and creates VC from itself to the switch.

testbed24% show tdp database
Destination Upstream Inbound tag Downstream Outbound tag
129.237.125.222 Ingress -1 129.237.166.72 103
129.237.126.78 Ingress -1 129.237.166.72 104

testbed10% show tdp database
Destination Upstream Inbound tag Downstream Outbound tag
129.237.116.74 Ingress -1 129.237.166.110 102
129.237.125.222 129.237.166.111 103 129.237.166.110 103
129.237.126.78 129.237.166.111 104 129.237.166.110 104

testbed23% show tdp database
Destination Upstream Inbound tag Downstream Outbound tag
129.237.116.74 129.237.166.72 102 Egress -1
129.237.125.222 129.237.166.72 103 Egress -1
129.237.126.78 129.237.166.72 104 Egress -1

testbed24 [131] % more /proc/atm/pvc
Itf VPI VCI AAL RX(PCR,Class) TX(PCR,Class)
 0 0 103 5 0 UBR 0 UBR
 0 0 104 5 0 UBR 0 UBR

testbed10 [131] % more /proc/atm/pvc
Itf VPI VCI AAL RX(PCR,Class) TX(PCR,Class)

Open Control Architectures
ITTC, University of Kansas

50

 0 0 102 5 0 UBR 0 UBR

testbed23 [131] % more /proc/atm/pvc
Itf VPI VCI AAL RX(PCR,Class) TX(PCR,Class)
 0 0 102 5 0 UBR 0 UBR
 0 0 103 5 0 UBR 0 UBR
 0 0 104 5 0 UBR 0 UBR

The cross-connect VC from 1A2 to 1A3 is deleted and new VC from 1A4 to 1A3 is created.

spud::configuration vcc> show
Input Output
Port VPI VCI Port VPI VCI UPC Protocol Name
1A4 0 102 1A3 0 102 0 pvc N/A
1A2 0 103 1A3 0 103 0 pvc N/A
1A2 0 104 1A3 0 104 0 pvc N/A

Route to 129.237.125.222 is deleted at testbed10 (core)

When testbed10 (core) loses a route, it sends RELEASE BIND to its downstream (here the egress)

and WITHDRAW BIND to the upstream (or ingress). In this test, when core loses route to

129.237.125.222, all the VCs pertaining to this destination are deleted.

testbed24% show tdp database
Destination Upstream Inbound tag Downstream Outbound tag
129.237.126.78 Ingress -1 129.237.166.72 104

testbed10% show tdp database
Destination Upstream Inbound tag Downstream Outbound tag
129.237.116.74 Ingress -1 129.237.166.110 102
129.237.126.78 129.237.166.111 104 129.237.166.110 104

testbed23% show tdp database
Destination Upstream Inbound tag Downstream Outbound tag
129.237.116.74 129.237.166.72 102 Egress -1
129.237.126.78 129.237.166.72 104 Egress -1

testbed24 [131] % more /proc/atm/pvc
Itf VPI VCI AAL RX(PCR,Class) TX(PCR,Class)
0 0 104 5 0 UBR 0 UBR

testbed10 [131] % more /proc/atm/pvc
Itf VPI VCI AAL RX(PCR,Class) TX(PCR,Class)
 0 0 102 5 0 UBR 0 UBR

Open Control Architectures
ITTC, University of Kansas

51

testbed23 [131] % more /proc/atm/pvc
Itf VPI VCI AAL RX(PCR,Class) TX(PCR,Class)
 0 0 102 5 0 UBR 0 UBR
 0 0 104 5 0 UBR 0 UBR

spud::configuration vcc> sh 1a2 0
Input Output
Port VPI VCI Port VPI VCI UPC Protocol Name
1A2 0 104 1A3 0 104 0 pvc N/A

Route to 129.237.126.78 is deleted at testbed23 (egress)

When egress (testbed23) loses a route, it sends TDP PIE WITHDRAW BIND message to the core

which in turn sends another WITHDRAW BIND for the same destination to the ingress deleting all

the resources allocated for the particular destination.

testbed24% show tdp database
Destination Upstream Inbound tag Downstream Outbound tag

testbed10% show tdp database
Destination Upstream Inbound tag Downstream Outbound tag
129.237.116.74 Ingress -1 129.237.166.110 102

testbed23% show tdp database
Destination Upstream Inbound tag Downstream Outbound tag
129.237.116.74 129.237.166.72 102 Egress -1

testbed24 [131] % more /proc/atm/pvc
Itf VPI VCI AAL RX(PCR,Class) TX(PCR,Class)

testbed10 [131] % more /proc/atm/pvc
Itf VPI VCI AAL RX(PCR,Class) TX(PCR,Class)
 0 0 102 5 0 UBR 0 UBR

testbed23 [131] % more /proc/atm/pvc
Itf VPI VCI AAL RX(PCR,Class) TX(PCR,Class)
 0 0 102 5 0 UBR 0 UBR

Since testbed10 and testbed23 have the route to 129.237.116.74, each still has a binding for that

destination.

Open Control Architectures
ITTC, University of Kansas

52

6.2 Implementation of MPLS CoS

Multi protocol Label Switching (MPLS) is a high performance forwarding method. The reachable

destinations are classified into various Forwarding Equivalence Classes (FECs). Packets belonging

to an FEC are treated in the same manner. For example, a destination prefix present in the routing

table can be an FEC and all packets going to that prefix are forwarded in the same way. The

packets are forwarded using labels. A label is a short fixed sized integer (16 bits) that has only local

significance and summarizes the information contained in the packet header. The label distribution

is achieved through a different protocol like Label Distribution Protocol (LDP) or enhanced routing

protocol. Since the label is of fixed size, the routing table search time can be greatly reduced.

Since LDP [12] is designed for label signaling, it provides more flexibility for MPLS signaling than

other enhanced routing protocols. LDP is the set of procedures and messages by which Label

Switched Routers (LSRs) establish Label Switched Paths (LSPs) through a network by mapping

network-layer routing information directly to data-link layer switched paths. When to request a

label or advertise a label mapping to a peer is largely a local decision made by an LSR. In general,

the LSR requests a label mapping from a neighboring LSR when it needs one, and advertises a

label mapping to a neighboring LSR when it wishes the neighbor to use a label. This

implementation of LDP supports down stream on demand label distribution.

Internet services are better sold if they provide certain guarantees rather than indeterministic

increase in performance. But attempts to implement reservations like RSVP are not feasible due to

lack of scalability at the core of the network. MPLS stores states from edge-to-edge of an AS and

hence the number of stored states will be proportional to the number of nodes in the MPLS domain.

By proper architecture of MPLS domains, the LSP states can be kept to manageable level. This will

let the providers to support reservations for preferred traffic.

6.2.1 MPLS CoS over ATM

Open Control Architectures
ITTC, University of Kansas

53

MPLS uses the switching ability if present of the link layer on which it is run. Since majority of the

devices in the core at present are ATM switches, proper translation of IP or MPLS CoS to ATM

QoS parameters is essential for service differentiation. IP CoS can have a maximum of 8 different

service classes and the translation mechanism would translate each service class to:

• an ATM service category (CBR, VBR or UBR),

• cell drop parameters (EPD and PPD)

This implementation recognizes 4 IP service classes 0/4, 1/5, 2/6, 3/7 and uses different drop

settings and bandwidth allocation to achieve service differentiation.

MPLS working group of the IETF suggested two approaches for translation:

• The most significant three bits of the IP ToS octet are copied to EXP field of MPLS shim

header and appropriate treatment is given based on the EXP field of the label. In this model,

RED and per-VC CBFQ provide service differentiation. The advantages of the QoS support

provided by ATM is not properly utilized.

• In the second approach, LDP is used to signal N labels per precedence per IP source-destination

pair. This model provides more flexibility in resource allocation and utilizes the ATM QoS

more effectively. There is a possible drop at the edge and the core of the network in this case.

This gives rise to congestion management at every hop which is an added advantage. The

implementation uses this approach.

6.2.2 Implementation Approach

The service differentiation is achieved at

• Edge using per CoS CBFQ and appropriate filters

• Core using per CoS CBFQ and EPD on ATM switch

UBR CLP 0/1 with appropriate Q size and CLP thresholds are used to achieve traffic differentiation

among four classes. CLP set for precedences 0-3 and not set for precedences 4-7.

Open Control Architectures
ITTC, University of Kansas

54

The DiffServ TLV [13] is used to signal precedence/codepoint information along with the label

request and label release messages. The DiffServ TLV for an L-LSP is given below.

+-+

|U|F| Type = PSC (0x901) | Length |

+-+

|T| Reserved | PSC |

+-+

T: LSP Type. This is set to 1 for an L-LSP

Reserved: 15 bits - This field is reserved. It must be set to zero on transmission and must be ignored

on receipt.

PSC: 16 bits - The PSC indicates a PHB Scheduling Class to be supported by the LSP.

Using the DiffServ TLV, the LDP peers exchange labels and associate label values with

appropriate precedences

6.2.3 Implementation Environment and Tools

• CMU’s SNMP library.

• TC tool for Linux and iproute2 [14].

• Linux 2.3.99 pre2 kernel and atm-0.71.

• Implementation of LDP.

• GNU's zebra [15] routing software (version 0.85) – contains OSPF and BGP routing processes

FORE switch MIB variables

• chanrInputPort, chanrInputVPI, chanrInputVCI, chanrOutputPort, chanrOutputVPI,

chanrOutputVCI, chanUpcContract of channelGroup

• upcContractKey, upcContractPCR01, upcContractPCR0, upcContractCDVT,

upcContractAal5Epd, upcContractDoGCRAPolicing, upcContractIsAAL5,

upcContractDoPacketDiscard, upcContractDoPPPolicing, upcContractEstimatedUbrBandwidth

of the UPC Configuration group.

Open Control Architectures
ITTC, University of Kansas

55

• pshmemQsizeforCBR, pshmemClpThreshforCBR of portShmemGroup

6.2.4 Implementation Structure

Linux PCs support the TCP/IP suite and can act as routers if they have multiple interfaces and the

kernel is configured to support IP forwarding. These Linux boxes act as Label Switch Controllers

(LSCs). Each Linux node is associated with an ATM switch to function as a LSR (LSC + ATM

Switch) in the offboard implementation of MPLS. SNMP was used for communication between

Linux and the Fore switch.

The LDP daemon implementation that takes care of signaling, requesting and binding labels starts

with four different independent processes each having a different function.

send-hello-packets-per iodically - sends LDP HELLO packets to a multicast address on all the

physical interfaces. This is used to discover LDP peers in the network.

process-hello-packets - processes LDP HELLO packets that arrive on an the multicast address.

HELLO packets are processed to obtain the capabilities of the peer and if the session can be

established with the neighbor.

wait-process - starts a new LDP session upon reception of a LDP OPEN message. The process

does the initial LDP state transition and then lets the LIB process take care of processing requests.

LIB process - takes care of processing request for labels and binding them. The main function of

the LIB process is to build a Label Forwarding Information Base LFIB. The LIB process also does

the following:

• implements a concurrent server that takes care of processing requests from the clients

(sessions),

• creates session processes to manage exchange between the two MPLS peers

• takes care of label allocation and cross-connecting using SNMP

The zebra daemon manages the routing tables on Linux and interacts with OSPF and BGP daemons

to obtain topology information of the network. It also interacts with the LIB process to get/set

certain network and QoS specific parameters.

Open Control Architectures
ITTC, University of Kansas

56

The Multi-VC module of the LIB process takes care of establishing four LSPs per source

destination pair and assigning appropriate Queue size, CLP threshold etc to each VC. It interacts

with the Fore switch to get free VCs, establish cross connects and set UPC contracts using SNMP.

It also sends the LIB entries to the kernel through the kernel module. The module also adds the

DiffServ TLV to the label request and label mapping messages.

Figure 12 – Architecture of MPLS CoS Implementation

Zebra is modified to let CoS parameters be configured on Zebra’s command line interface. The

zebra msg processing module takes care of requests from zebra and processes them and sends LIB

entries and session information to zebra. This module is responsible for indicating a CoS

configuration change to the multi-VC module. The multi-VC module sets up appropriate queues

Open Control Architectures
ITTC, University of Kansas

57

and filters at the edge and IPC parameters at the core (ATM switch). The iproute2 and tc-tools are

used to setup queues and filters.

When an LER receives a packet to be forwarded, it enqueues the packet in a Class Based Queue.

The scheduler after dequeuing the packet looks up in the kernel Label Information Base (LIB) to

find the proper outgoing VC and precedence. The dequeuing based on precedence bits provides

service differentiation at the edges. The ATM switches at the core merely switch packets from one

VC to another based on the cross-connects that were created using SNMP during LDP signaling.

When egress LER receives the packet, it does normal IP forwarding.

6.2.5 CoS Implementation

Different types of CoS mechanisms are required at the core and at the edge. As mentioned earlier,

the edge LSR has to implement per-CoS CBFQ and the core LSR has to implement per-CoS CBFQ

and per-CoS EPD. The mechanisms used to implement per-CoS CBFQ at the edge is different from

that used at the core.

6.2.5.1 At the Edge

The TC tool for Linux is used to implement queues and filters on Linux. This implementation uses

the Class Based queues that come with the TC tool. Four classes are created with user configurable

bandwidths. Eight filters are then setup at the ingress to filter packets that belong to any one of the

eight precedences onto the appropriate queue. These information relating to these queues and filters

are then sent to the kernel using netlink socket. In the kernel, these netlink messages are received

and Qdiscs are setup according to the specifications in the Netlink messages. The way in which

Qdiscs and classes are setup on a particular interface are as follows

1. Create a parent Qdisc with bandwidth equal to the total aggregate bandwidth of the four classes.

2. Create four classes with user configurable bandwidths and assign priorities of 0, 1, 2 and 3 to

the four classes. The class with the higher priority is chosen in preference to a class with a

lower priority when scheduling.

Open Control Architectures
ITTC, University of Kansas

58

3. Associate the four classes with the parent Qdisc.

4. Create 8 filters for the parent Qdisc to match the ToS octet and associate a flow ID with each

filter. Use the flow ID in the classes to match filters.

6.2.5.2 At the Core

At the core, SNMP is used to configure the switches to provide appropriate CoS. Fore switches

have Usage Parameter Control (UPC) MIB variables using which one can assign bandwidth to a

particular Class. An UPC contract defines the parameters that traffic belonging to the contract

should confine to. UPC contracts can be used for policing, rate limiting, queueing, scheduling etc.

The way this implementation uses UPC contracts is as follows. Three user configurable UPC

contracts are created on each port of ATM switch. Parameters like PCR, MBS, SCR, PCR for 0

CLP, EPD, CDVT and estimated UBR bandwidth can be set using UPC contracts.

Each VC of classes 1, 2 and 3 is created using an UPC contract. Hence all the VCs belonging to the

same class will have properties associated that particular UPC contract. No UPC contract is defined

for class 0. This helps in achieving per-CoS treatment at a LSR.

6.2.6 Test Results and Observations

The test scenario that was used for testing the implementation is shown in Figure 13. The MPLS

cloud consists of three LSRs, two LERs and one core. Two static routes were also configured to

enable connectivity from qost3 to wintermute and vice-versa through the MPLS cloud.

Traceroute results from qost3 to wintermute before LDP was run is as shown below.

qost3 [3] # traceroute wintermute
traceroute to wintermute.ittc.ukans.edu (129.237.126.161), 30 hops
max, 38 byte
packets
 1 qost4 (129.237.126.36) 0.186 ms 0.126 ms 0.119 ms
 2 192.168.125.2 (192.168.125.2) 0.371 ms 0.368 ms 0.354 ms
 3 192.168.126.2 (192.168.126.2) 0.593 ms 0.591 ms 0.583 ms
 4 wintermute (129.237.126.161) 0.698 ms 0.660 ms 0.648 ms

Open Control Architectures
ITTC, University of Kansas

59

LDP was run on all the three LSRs. The LFIB, session information and traceroute results after LDP

was run is as given below. It can be seen that traceroute sees the MPLS cloud as a single hop.

qost3 [4] # traceroute wintermute
traceroute to wintermute.ittc.ukans.edu (129.237.126.161), 30 hops
max, 38 byte
packets
 1 qost4 (129.237.126.36) 0.314 ms 0.135 ms 0.125 ms
 2 192.168.126.2 (192.168.126.2) 0.670 ms 0.610 ms 0.581 ms
 3 wintermute (129.237.126.161) 0.824 ms 0.659 ms 0.656 ms

6.2.6.1 Test #1

Two traffic streams were generated from qost3 to wintermute using Netspec. The first stream was

given a precedence of 1 and the second stream was given a precedence of 2. The allocated

qost4 qost1 qost2

Spot Spud Spot

TDP signaling between peers

Physical Connections

Figure 13 - MPLS CoS test setup

wintermuteqost3

neuromancer

192.168.125.1 .125.2 .126.1 .126.2
129.237.126.161129.237.126.35

Open Control Architectures
ITTC, University of Kansas

60

bandwidth and throughputs are shown in Table 10. The total bandwidth is approximately 133

Mbps.

Precedence Allocated

Bandwidth (Mbps)

Transmitted thruput

(Mbps)

Received thruput

(Mbps)

1 (class 1) 60 36.280 35.696

2 (class 2) 60 36.215 35.547

Table 10 – Two streams with equal bandwidth allocation

It can be seen that allocating equal bandwidth to the two classes (class 1 and class 2) results in both

the flows getting almost the same received throughput.

6.2.6.2 Test #2

Here, class 1 was allocated a bandwidth of 20 Mbps and class 2 was allocated 60 Mbps and the

same test was conducted. The result is in Table 11.

Precedence Allocated

Bandwidth (Mbps)

Transmitted thruput

(Mbps)

Received thruput

(Mbps)

1 (class 1) 20 36.273 4.178

2 (class 2) 60 36.197 36.176

Table 11 – Two streams with unequal bandwidth allocation

A result of similar test with 20 Mbps allocated to class 2 flow is given in Table 12.

Precedence Allocated

Bandwidth (Mbps)

Transmitted thruput

(Mbps)

Received thruput

(Mbps)

1 (class 1) 60 36.278 36.198

2 (class 2) 20 36.235 4.418

Table 12 - Two streams with unequal bandwidth allocation

Open Control Architectures
ITTC, University of Kansas

61

Observation

The results in Table 11 and 12 show that even though the total volume of the two streams is not

high, the stream that is allocated lesser bandwidth suffered heavy drops. Since at the core packets

are switched, the drop is due to the queuing done at the ingress.

6.2.6.3 Test #3

In this test, 4 stream bursts were sent between qost3 and wintermute and the link between qost4 and

qost2 though the Fore switch was congested by background traffic of 10 Mbps and highest

precedence (precedence = 7). The transmitted and received throughputs of the traffic streams are

shown in Table 13. Also the throughputs of the background traffic are shown.

Precedence Allocated

Bandwidth (Mbps)

Transmitted thruput

(Mbps)

Received thruput

(Mbps)

6 (class 2) 20.005 19.914

2 (class 2)

40

20.006 19.905

5 (class 1) 20.009 19.819

1 (class 1)

60

20.012 0.398

Table 13 – Four streams with one stream CLP set

Background traffic

neuromancer [227] # netspec neuro-winter | grep Thru

 Thruput transmitted : 10.001 Mbps
 Thruput received : 9.960 Mbps

It can be seen that class 1 traffic whose CLP was set has a low throughput compared to the other

flows. Other flows with CLP not set did not suffer drops. Also, the highest precedence background

traffic did not suffer any drop.

Open Control Architectures
ITTC, University of Kansas

62

6.2.6.4 Test #4

In this test, a background stream of 40 Mbps was used to fill the pipe between qost4 and qost2

though the Fore switches. Two full blast streams were then sent to compete for bandwidth between

qost4 and qost2. The results are shown in Table 14. The precedence of the background traffic is 6.

Precedence Allocated

Bandwidth (Mbps)

Transmitted thruput

(Mbps)

Received thruput

(Mbps)

1 (class 1) 40 36.255 5.490

2 (class 2) 80 36.235 28.116

Table 14 – Two streams allocated unequal bandwidths with background traffic

neuromancer [283] # netspec neuro-winter | grep Thru
 Thruput transmitted : 39.975 Mbps
 Thruput received : 39.969 Mbps

It can be seen that the background traffic suffered no drops in the ATM core. The class 1 flow

suffered drops even though it was allocated a considerable bandwidth and the class 2 flow did not

suffer heavy drop. This test clearly shows that relative bandwidth was the criteria used to do per

CoS treatment.

6.3 Conclusions

As part of this project, missing functionality to the previous version of the implementation of

offboard tag control architecture are implemented and IP Class of Service (CoS) functionality is

integrated and tested to the KU implementation of MPLS LDP. The MPLS CoS implementation

forms the basis for providing end-to-end QoS service in a QoS aware network spanning IP and

MPLS domains. Future work will be the integration of a Bandwidth Broker to negotiate/maintain

SLAs and set/reserve resources and mapping from DiffServ to MPLS CoS.

Open Control Architectures
ITTC, University of Kansas

63

7 Contr ibutions to Open Control Community

As part of this task, the observations and experiences gained in this work are presented to Open

Control community as a technical report [16]. The contributions also include the elucidation of the

relative merits and demerits of VSI and GSMP as switch control protocols.

Some salient observations are:

• Resource management will be made simpler if the partition resources are allowed to be

increased or be readjusted. In most of the situations, reducing partition resources may affect the

connections that are already present in the partition. The control interface should provide

messages for the controller to increase or readjust the switch resources. VSI allows increase of

partition resources but with GSMP, the partitioning is static and has to be done before running

GSMP adjacency.

• Hardware or multipath redundancy is better for deployment than redundancy support provided

by the control protocol. This is because packet loss is inevitable in the control protocol method

since the internal states (OSPF, LDP databases) of the controllers cannot be kept synchronized

completely without hardware support.

• GSMP supports wider range of control planes and provides for better interoperability among

multitude of controller and switch vendors.

8 Conclusions

Open control architectures facilitate the evolution and rapid deployment of new, innovative and

interesting control architectures that use the switching resources more efficiently. Flexible service

creation is easier with network devices that run with open control. Our effort is to study, configure

and evaluate the features of two popular label switch control interfaces namely VSI and GSMP and

implement Tag switching and MPLS control architectures that make use of open control.

Recently we observe dominance of different vendors in different levels of the network. Some

vendors dominate primarily in high-speed switches based on optical solutions and some in edges.

This will lead the providers to look for interoperable solutions to make better use of latest

Open Control Architectures
ITTC, University of Kansas

64

developments. Work on GSMPv3 is ongoing and IETF has not come up with final standard yet.

GSMPv3 supports wide range of link layers and control planes and finalization of GSMPv3

standard will most likely enable many vendors to market their implementations. Future work will

be to study the usefulness of these control protocols with high-speed optical switches.

9 References

[1] E. Rosen et. al., Multiprotocol Label Switching Architecture, draft-ietf-mpls-arch-07.txt, July

2000

[2] Jim McEachern, Service Control Interface Requirements Multiservice Switching Forum (MSF)

Contribution, 21 June 1999

[3] P. Newman et. al., Ipsilon’s General Switch Management Protocol Specification Version 2.0

(GSMPv2.0), RFC 2297, March 1998

[4] A. Doria et. al., General Switch Management Protocol V3, draft-ietf-gsmp-06.txt, August 2000

[5] Cisco CCO Documents, Release Notes and Configuration Guides

[6] QoS Translation (QoST) Project, Information and Telecommunication Technology Center,

University of Kansas

[7] R. Jonkman, NetSpec: A Network Performance and Evaluation Tool, University of Kansas

[8] Cplane’s Switchlet Software Development Kit (SSDK) 2.0, Instructions Manual

[9] K. Sundell and A. Doria, GSMP WG response to MSF SCI Requirements, draft-ietf-gsmp-msf-

response-00.txt, 20 August 1999

[10] K. Sundell and A. Doria, General Switch Management Protocol Applicability, draft-ietf-gsmp-

applicability-01.txt, July 2000

[11] P. Doolan et. al., Tag Distribution Protocol, draft-doolan-tdp-spec-01.txt, May 1997

[12] L. Andersson et. al., LDP Specification, August 2000

[13] Le Faucheur et. al., MPLS Support of Diff-Serv, draft-ietf-mpls-diff-ext-07.txt, August 2000

[14] Linux 2.4 Advanced Networking HOWTO, http://www.linuxdoc.org/HOWTO/Adv-Routing-

HOWTO.html

[15] Zebra Routing Software version 0.85, www.zebra.org

[16] B. Ramachandran, C. Ramachandran and Dr. J.B.Evans, Experiences with VSI and GSMP as

offboard switch control protocol, ITTC Technical Report.

Open Control Architectures
ITTC, University of Kansas

65

Appendix A

Switchlet Configuration file:

switchletConfig {
 switchletPaConfig {
 paType = gsmpSwitchletPa;
 paTransport {
 transportType = UDP;
 localPort = 30001;
 }
 }
 switchletResourceConfig {
 portConfig {
 physicalPort = 0;
 logicalPort = 0;
 portBandwidthConfig {
 inBw = 500;
 outBw = 500;
 }
 portLabelSpaceConfig {
 inLabelSpaceConfig {
 numVcRanges = 1;
 vcRange {
 minVpi = 1;
 maxVpi = 1;
 minVci = 400;
 maxVci = 450;
 }
 }
 outLabelSpaceConfig {
 numVcRanges = 1;
 vcRange {
 minVpi = 1;
 maxVpi = 1;
 minVci = 400;
 maxVci = 450;
 }
 }
 }
 }
 portConfig {
 physicalPort = 1;
 logicalPort = 1;
 portBandwidthConfig {
 inBw = 500;
 outBw = 500;
 }
 portLabelSpaceConfig {
 inLabelSpaceConfig {
 numVcRanges = 1;
 vcRange {

Open Control Architectures
ITTC, University of Kansas

66

 minVpi = 1;
 maxVpi = 1;
 minVci = 400;
 maxVci = 450;
 }
 }
 outLabelSpaceConfig {
 numVcRanges = 1;
 vcRange {
 minVpi = 1;
 maxVpi = 1;
 minVci = 400;
 maxVci = 450;
 }
 }
 }
 }
 }
}

